8 research outputs found

    A Comparison of Neuroelectrophysiology Databases

    Full text link
    As data sharing has become more prevalent, three pillars - archives, standards, and analysis tools - have emerged as critical components in facilitating effective data sharing and collaboration. This paper compares four freely available intracranial neuroelectrophysiology data repositories: Data Archive for the BRAIN Initiative (DABI), Distributed Archives for Neurophysiology Data Integration (DANDI), OpenNeuro, and Brain-CODE. These archives provide researchers with tools to store, share, and reanalyze neurophysiology data though the means of accomplishing these objectives differ. The Brain Imaging Data Structure (BIDS) and Neurodata Without Borders (NWB) are utilized by these archives to make data more accessible to researchers by implementing a common standard. While many tools are available to reanalyze data on and off the archives' platforms, this article features Reproducible Analysis and Visualization of Intracranial EEG (RAVE) toolkit, developed specifically for the analysis of intracranial signal data and integrated with the discussed standards and archives. Neuroelectrophysiology data archives improve how researchers can aggregate, analyze, distribute, and parse these data, which can lead to more significant findings in neuroscience research.Comment: 25 pages, 8 figures, 1 tabl

    Common Data Elements to Facilitate Sharing and Re-use of Participant-Level Data: Assessment of Psychiatric Comorbidity Across Brain Disorders

    Get PDF
    The Ontario Brain Institute\u27s “Brain-CODE” is a large-scale informatics platform designed to support the collection, storage and integration of diverse types of data across several brain disorders as a means to understand underlying causes of brain dysfunction and developing novel approaches to treatment. By providing access to aggregated datasets on participants with and without different brain disorders, Brain-CODE will facilitate analyses both within and across diseases and cover multiple brain disorders and a wide array of data, including clinical, neuroimaging, and molecular. To help achieve these goals, consensus methodology was used to identify a set of core demographic and clinical variables that should be routinely collected across all participating programs. Establishment of Common Data Elements within Brain-CODE is critical to enable a high degree of consistency in data collection across studies and thus optimize the ability of investigators to analyze pooled participant-level data within and across brain disorders. Results are also presented using selected common data elements pooled across three studies to better understand psychiatric comorbidity in neurological disease (Alzheimer\u27s disease/amnesic mild cognitive impairment, amyotrophic lateral sclerosis, cerebrovascular disease, frontotemporal dementia, and Parkinson\u27s disease)

    Rasch analyses of the Quick Inventory of Depressive Symptomatology Self-Report in neurodegenerative and major depressive disorders

    Get PDF
    BackgroundSymptoms of depression are present in neurodegenerative disorders (ND). It is important that depression-related symptoms be adequately screened and monitored in persons living with ND. The Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) is a widely-used self-report measure to assess and monitor depressive severity across different patient populations. However, the measurement properties of the QIDS-SR have not been assessed in ND.AimTo use Rasch Measurement Theory to assess the measurement properties of the Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) in ND and in comparison to major depressive disorder (MDD).MethodsDe-identified data from the Ontario Neurodegenerative Disease Research Initiative (NCT04104373) and Canadian Biomarker Integration Network in Depression (NCT01655706) were used in the analyses. Five hundred and twenty participants with ND (Alzheimer’s disease or mild cognitive impairment, amyotrophic lateral sclerosis, cerebrovascular disease, frontotemporal dementia and Parkinson’s disease) and 117 participants with major depressive disorder (MDD) were administered the QIDS-SR. Rasch Measurement Theory was used to assess measurement properties of the QIDS-SR, including unidimensionality and item-level fit, category ordering, item targeting, person separation index and reliability and differential item functioning.ResultsThe QIDS-SR fit well to the Rasch model in ND and MDD, including unidimensionality, satisfactory category ordering and goodness-of-fit. Item-person measures (Wright maps) showed gaps in item difficulties, suggesting poor precision for persons falling between those severity levels. Differences between mean person and item measures in the ND cohort logits suggest that QIDS-SR items target more severe depression than experienced by the ND cohort. Some items showed differential item functioning between cohorts.ConclusionThe present study supports the use of the QIDS-SR in MDD and suggest that the QIDS-SR can be also used to screen for depressive symptoms in persons with ND. However, gaps in item targeting were noted that suggests that the QIDS-SR cannot differentiate participants falling within certain severity levels. Future studies would benefit from examination in a more severely depressed ND cohort, including those with diagnosed clinical depression

    Whole genome sequencing analysis of high confidence variants of B-cell lymphoma in Canis familiaris.

    No full text
    Lymphoma (lymphosarcoma) is the second most frequent cancer in dogs and is clinically comparable to human non-Hodgkin lymphoma. Factors affecting canine lymphoma progression are unknown and complex, but there is evidence that genetic mutations play an important role. We employed Next Gen DNA sequencing of six dogs with multicentric B-cell lymphoma undergoing CHOP chemotherapy to identify genetic variations potentially impacting response. Paired samples from non-neoplastic tissue (blood mononuclear cells) and lymphoma were collected at the time of diagnosis. Cases with progression free survival above the median of 231 days were grouped as 'good' responders and cases below the median were categorized as 'poor' responders. The average number of variants found was 17,138 per case. The variants were filtered to examine those with predicted moderate or high impacts. Many of the genes with variants had human orthologs with links to cancer, but the majority of variants were not previously reported in canine or human lymphoma. Seven genes had variants found in the cancers of at least two 'poor' responders but in no 'good' responders: ATRNL1, BAIAP2L2, ZNF384, ST6GALNAC5, ENSCAFG00000030179 (human ortholog: riboflavin kinase RFK), ENSCAFG00000029320, and ENSCAFG00000007370 (human ortholog: immunoglobin IGKV4-1). Two genes had variants found in the cancers of at least two 'good' responders but in no 'poor' responders: COX18 and ENSCAFG00000030512. ENSCAFG00000030512 has no reported orthologue in any other species. The role of these mutations in the progression of canine lymphoma requires further functional analyses and larger scale study

    FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research

    Get PDF
    The effective sharing of health research data within the healthcare ecosystem can have tremendous impact on the advancement of disease understanding, prevention, treatment, and monitoring. By combining and reusing health research data, increasingly rich insights can be made about patients and populations that feed back into the health system resulting in more effective best practices and better patient outcomes. To achieve the promise of a learning health system, data needs to meet the FAIR principles of findability, accessibility, interoperability, and reusability. Since the inception of the Brain-CODE platform and services in 2012, the Ontario Brain Institute (OBI) has pioneered data sharing activities aligned with FAIR principles in neuroscience. Here, we describe how Brain-CODE has operationalized data sharing according to the FAIR principles. Findable—Brain-CODE offers an interactive and itemized approach for requesters to generate data cuts of interest that align with their research questions. Accessible—Brain-CODE offers multiple data access mechanisms. These mechanisms—that distinguish between metadata access, data access within a secure computing environment on Brain-CODE and data access via export will be discussed. Interoperable—Standardization happens at the data capture level and the data release stage to allow integration with similar data elements. Reusable - Brain-CODE implements several quality assurances measures and controls to maximize data value for reusability. We will highlight the successes and challenges of a FAIR-focused neuroinformatics platform that facilitates the widespread collection and sharing of neuroscience research data for learning health systems
    corecore